Рисунок к заданию во вложении
По рисунку,
Дано:
флагшток, тросс и расстояние от точки основания флагштока до места крепления троса на земле, составляют прямоугольный треугольник, где:
флагшток (b) - катет
расстояние от основания до места крепления (а) - катет
тросс (с) - гипотенуза
флагшток, закрепленный вертикально, перпендикулярен земле угол, между а и b = 90°.
Найти: длину катета а.
Решение: по теореме Пифагора:
c²=a²+b²
a=√(c²-b²)
c=6.5 м
b=6.3 м
a=√(6.5²-6.3²) м
a=√2.56 м
a=1.6 м
ответ: расстояние от точки основания флагштока до места крепления троса на земле равно 1.6 м
АС - диаметр ⇒ ∠АВС=90° (как угол, опирающийся на диаметр) .
ΔАКС: ∠АКС=90° , АК=КС ⇒ ΔАКС - равнобедренный ⇒
∠АСК=∠САК=45°
ОВ || СК , АС - секущая ⇒ ∠АСК=∠АОВ=45° (соответственные углы)
ОА=ОВ как радиусы ⇒ ΔАОВ - равнобедренный ⇒
∠ОАВ=∠ОВА=(180°-45°):2=67,5°
ΔАВС , ∠АВС=90° , ∠САВ=67,5° ⇒ ∠АСВ=180°-90°-67,5°=22,5°
Или можно сразу сказать, что из того, что центральный угол ∠АОВ=45° опирается на дугу АВ . Вписанный угол ∠АСВ, опирающийся на ту же дугу АВ , равен половине центрального угла, то есть ∠АСВ=1/2*∠АОВ=1/2*45°=22,5° .