прямоугольник площадь которого равна S вращается вокруг оси проходящей через его вершину параллельно диагонали вычислите площадь поверхности фигуры вращения если угол между диагоналями равен a
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
В любом треугольнике можно провести 3 медианы. Все они пересекаются в одной точке, в центре (центре тяжести) треугольника.
AK = KC , BK — медиана ABC ,
О — центр A 1B 1C 1 .
Биссектриса треугольника — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой на противолежащей стороне.
Обратите внимание, что биссектриса угла — это луч, делящий угол на два равных, а биссектриса треугольника — это отрезок, часть луча, ограниченная стороной треугольника.
BK — биссектриса ABC ,
A 1О — биссектриса C 1A 1B 1 .
В каждом треугольнике можно провести 3 биссектрисы, которые пересекаются в одной точке, обычно обозначаемой латинской буквой I .
Точка пересечения биссектрис треугольника ( I ) — центр вписанной в треугольник окружности.
Высота треугольника — перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
Дано: АВСD - равнобокая трапеция, АВ=СD= 6 см, МN- средняя линий, МО= 2 см; ОN=5 см. Найти: ∠ВАD, ∠АВС Решение. ΔАВС. ОМ- средняя линия, равна 2 см, значит ВС=4 см., средняя линия в 2 раза меньше ВС. ΔАСD. ОN- средняя линия равна 5 см. значит АD= 10 см.Построим СК║АВ. АВСК - параллелограмм, противоположные стороны параллельны и равны: АК=ВС=4 см.СК=АВ=6 см. ΔСDК равнобедренный: СК=СD= 6 см. Построим СН⊥АD, тогда КD=АD-АК=10-4=6 см. Но СН также является медианой в равнобедренном ΔКСD, значит КН=НD=6/2=3 см. ΔСDН. cosD=HD/CD=3/6=0,5. ∠НDС=60°. ∠ВАD=СDА=60°. ∠АВС=∠ВСD=180-60=120°. ответ: 60°; 120°.
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Объяснение:
Вот так как-то