Через точку перетину медіан трикутника АВС, паралельно прямій АВ проведено площину, яка перетинає сторони АВ і ВС у точках D i E. Знайдіть довжину відрізка DE, якщо АВ=18 см.
AB, AC і MN - дотичні, проведені до кола (B, C, K - точки дотику). Знайдіть периметр ΔAMN , якщо AB = 8 см.
Известная теорема: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
MK = MB
NK = NC
AC = AB
P (ΔAMN) =AM + MN + AN = AM +( MK + NK ) +AN =
AM +( MB + NC ) +AN = (AM + MB) + (AN + NC) = AB +AC = 2*AB
Прямоугольная трапеция АВСД. АД делится пополам высотой ВН,следовательно,АН = НД. Угол А = 60 градусов,значит угол В равен 30 градусом(т.к. ВН перпендикуляр,то угол Н равен 90 градусов,а углы в треугольнике в сумме дают 180 градусов).Сторона лежащая напротив угол 30 градусов равен половине гипотинузы,значит АН равен 4(по условию большая боковая сторона равна 8,следовательно это сторона АВ). Треугольник равнобедренный и чтобы найти ВН воспользуемся теоремой Пифагора: ВН^2=АВ^2-АН^2=64-16= 48,значит ВН= корню из 48 или 4 корня из 3. Найдем площадь трапеции: СВ+АД/2*ВН=4+8/2*4 корня из 3=24 корня из 3. ответ: 24 корня из 3 см квадратных.
AB, AC і MN - дотичні, проведені до кола (B, C, K - точки дотику). Знайдіть периметр ΔAMN , якщо AB = 8 см.
Известная теорема: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
MK = MB
NK = NC
AC = AB
P (ΔAMN) =AM + MN + AN = AM +( MK + NK ) +AN =
AM +( MB + NC ) +AN = (AM + MB) + (AN + NC) = AB +AC = 2*AB
ответ: P (ΔAMN) = 2*AB = 2*8 cм = 16 см