1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.
M - середина AC. Треугольники ABE и AME равны по двум сторонам (AM=AC/2=AB) и углу между ними (AE - биссектриса). Значит ∠ABE=∠AME. Т.к. EM - медиана равнобедренного треугольника AEC (AE=EC), то EM - его высота, т.е. ∠AME=90°. Итак, ∠ABC=∠ABE=∠AME=90°.
Значит, треугольники ABE и ADE равны, по двум сторонам и углу между ними. ED – медиана равнобедренного треугольника, следовательно, его высота. Поэтому <АВС = < ADE =90°.
Объяснение:
Удачи