М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Дана равнобедренная трапеция. Большое основание трапеции равно 18 см а боковая равна 5 см тупой угол равен 135. Найдите среднюю линию трапеции

👇
Открыть все ответы
Ответ:

ПАРАЛЛЕЛЬНОЕ ПРОЕКТИРОВАНИЕ

В стереометрии изучаются пространственные фигуры, однако на чертеже они изображаются в виде плоских фигур. Каким же образом следует изображать пространственную фигуру на плоскости? Обычно в геометрии для этого используется параллельное проектирование.

Пусть p - некоторая плоскость, l - пересекающая ее прямая (рис. 1). Через произвольную точку A, не принадлежащую прямой l, проведем прямую, параллельную прямой l. Точка пересечения этой прямой с плоскостью p называется параллельной проекцией точки A на плоскость p в направлении прямой l. Обозначим ее A'. Если точка A принадлежит прямой l, то параллельной проекцией A на плоскость p считается точка пересечения прямой l с плоскостью p.

Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость p. Это соответствие называется параллельным проектированием на плоскость p в направлении прямой l.

Пусть Ф - некоторая фигура в пространстве. Проекции ее точек на плоскость p образуют фигуру Ф', которая называется параллельной проекцией фигуры Ф на плоскость p в направлении прямой l. Говорят также, что фигура Ф' получена из фигуры Ф параллельным проектированием.

Примеры параллельных проекций дают, например, тени предметов под воздействием пучка параллельных солнечных лучей.

Рассмотрим свойства параллельного проектирования.

Свойство 1. Если прямая параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой является точка. Если прямая не параллельна и не совпадает с прямой l, то ее проекцией является прямая.

Доказательство. Ясно, что если прямая k параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой на плоскость p будет точка пересечения прямой l и плоскости p. Пусть k не параллельна и не совпадает с прямой l (рис. 2). Возьмем какую-нибудь точку A на прямой k и проведем через нее прямую a, параллельную l. Ее пересечение с плоскостью проектирования p даст точку A', являющуюся проекцией точки A. Через прямые a и k проведем плоскость a . Ее пересечением с плоскостью p будет искомая прямая k', являющаяся проекцией прямой k.

4,7(83 оценок)
Ответ:
eremenko6kirov
eremenko6kirov
22.11.2021

Фактически задача сводится к нахождению координат вектора CD.

Мы знаем, что СD перпендикулярно AB. И CD проходит через точку C.

Условие перпендикулярности -> косинус угла между векторами CD и AB равен нулю.

Формула косинуса угла между векторами - cos(AB\ \^;CD)=\frac{x_{1}x_{2}+y_{1}y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}}

AB={-1+5;4-1}={4;3}

CD={x2-3;y2-2}

Составим уравнение прямой АВ: \frac{x+1}{4}=\frac{y-4}{3} (*)

Подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:

4(x2-3)+3(y2-2)=0

Также точка D принадлежит прямой AB, а значит x2 и y2 удовлетворяют уравнению (*).

Решаем полученную систему уравнений.

\left \{ {{4(x2-3)+3(y2-2)=0} \atop {\frac{x2+1}{4}=\frac{y2-4}{3}}} \right.

Мне лень решать - сами решите. Как найдёте x2 и y2 - подставьте их и найдите координаты вектора CD. Зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.

Оно выглядит так: \frac{x-x_{0}}{x_{p}}=\frac{y-y_{0}}{y_{p}}, где x_{p}, y_{p} - координаты напрвляющего вектора (в нашем случае вектора CD), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае С или D - на выбор)

4,4(15 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ