а) Центр О2 находится внутри окружности О1, окружности пересекаются
б) Расстояние между центрами равно сумме радиусов. Каждая из окружностей лежит вне другой, но они имеют общую точку на линии центров (внешнее касание)
в) Каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.
Объяснение:
а) 10 меньше, чем 11. Значит, r находится внутри окружности R.
11-10=1 см - расстояние от О2 до границы окружности О1.
1 меньше, чем 3,5, следовательно, окружности пересекаются
б) 7,3+3,7=11 см и расстояние О1О2 = 11 см, следовательно, окружности касательны друг к другу наружно.
в) 7+5=12 см, что меньше, чем О1О2 = 15 см, следовательно, каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.
Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2