Уравнение первой прямой: у=х+2 это прямая проходящая через 2 точки: (0;2) и (-1;1); вторая прямая совпадает с осью ох; третья прямая проходит через точку (-1;0) параллельно оси оу; четвёртая проходит через точку (2;0) также параллельно оу; полученный четырёхугольник с вершинами в точках (-1;0); (-1;1); (2;4);(2;0) можно разбить на 2 фигуры: прямоугольник с вершинами в точках (-1;0);(-1;1);(2;1);(2;0) и прямоугольный треугольник с вершинами в точках (-1;1);(2;1);(2;4). стороны прямоугольника: 1 и 3; его площадь: 1*3=3 катеты прямоугольного треугольника: 3 и 3; его площадь: 3*3/2 = 4,5. площадь нашего первоначального четырёхугольника равна сумме площадей его частей (то есть прямоугольника и прямоугольного треугольника) = 4,5+3=7,5 ответ: 7,5.
В равнобедренном тр-ке АВС ∠ВАС=(180-120)/2=30°. Опустим высоту ВМ на сторону АС. АМ=МС. В тр-ке АВМ АМ=АВ·cos30=3√3 см. АС=2АМ=6√3 см. ВМ=АВ·sin30=3 cм. В тр-ке АВА1 ВА1²=АА1²+АВ²=8²+6²=100, ВА1=10 см. В тр-ке А1С1В проведём высоту ВК на сторону А1С1. ВК²=ВА1²-А1К². В прямоугольнике АСС1А1 А1К=АМ=3√3 см, значит ВК²=10²-(3√3)²=73, ВК=√73 см. а) Площадь сечения А1С1В: S=А1С1·ВК/2=6√3·√73/2=3√219 см² - это ответ. б) В тр-ке ВКМ МК⊥А1С1, ВК⊥А1С1, значит ∠ВКМ - угол между плоскостями А1С1В и АСС1 (А1С1 принадлежит обоим плоскостям) tg(BKM)=ВМ/МК=3/8 - это ответ.
у=х+2
это прямая проходящая через 2 точки: (0;2) и (-1;1);
вторая прямая совпадает с осью ох;
третья прямая проходит через точку (-1;0) параллельно оси оу;
четвёртая проходит через точку (2;0) также параллельно оу;
полученный четырёхугольник с вершинами в точках (-1;0); (-1;1); (2;4);(2;0) можно разбить на 2 фигуры: прямоугольник с вершинами в точках (-1;0);(-1;1);(2;1);(2;0) и прямоугольный треугольник с вершинами в точках (-1;1);(2;1);(2;4).
стороны прямоугольника:
1 и 3;
его площадь: 1*3=3
катеты прямоугольного треугольника:
3 и 3;
его площадь: 3*3/2 = 4,5.
площадь нашего первоначального четырёхугольника равна сумме площадей его частей (то есть прямоугольника и прямоугольного треугольника) = 4,5+3=7,5
ответ: 7,5.