Точка АКЕ. Через точки К, А и Е проведены параллельные прямые , пересекающие эту плоскость соответственно в точках К1 , А1 и Е1. Выполните рисунок к задаче и найдите длину отрезка АА1, если А середина отрезка КЕ и ЕЕ1 = 5 см, КК1= 12 см,
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
Дано: А(-1;2) , B(5:-6), C(6;4) Найти: CD Решение: 1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB 2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками. 3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10 D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2) 4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13 ответ: 2√13
К этому решению также приведен чертеж на фотографии.