Здесь нужно вспомнить о средней линии треуг-ка. Средняя линия тр-ка - это отрезок, соединяющий середины двух его сторон. Средняя линия параллельна третьей стороне и равна ее половине. MN, NP и РМ - средние линии треуг-ка АВС. Теперь смотрим на наш треуг-к.
В тр-ке MNP и CPN сторона NP общая. NC=1/2BC так как N середина ВС, МР=1/2ВС так как МР - средняя линия. Значит MP=NC. РС=1/2АС так как Р - середина АС, MN=1/2AC так как MN - средняя линия. Значит MN=PC. Получили, что три стороны одного тр-ка соответственно равны трем сторонам другого тр-ка, значит тр-ки равны по 3 признаку.
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
ответ: все углы треугольника по 60°.
Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
ответ: все углы треугольника по 60°.