Диагональ основания параллелепипеда равна корень квадратный из .15^2+8^2=17 Диагональ параллелепипеда образует с диагональю основания угол 45 градусов . Рассмотрим треугольник, образуемый этими диагоналями и боковым ребром. Этот треугольник прямоугольный. Из него находим ребро . Оно равно диагональ основания *на тангенс 45 =17.Тогда площадь боковой поверхности равно периметр основания*боковое ребро(высота),те 15*8*17=2040 Полная поверхность равна боковая поверхность +2 площади основания., т.е.2040+2*15*8=2280
По-моему решается так: 1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB. 2) Биссектриса делит угол АСД на равные углы АСМ и МСД. 3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ). 4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5. 5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10. 6) Периметр прямоугольника равен (10+5)2= 30 ответ: 30
1) АД
2) АВ
3) Д1Д
это перпендикуляры :)