Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
1) Т.к сумма углов в треугольнике = 180 градусов, => угол B = 180-(35+48)=97
2) Угол CAB смежный с внешним углом А => угол CAB=180-110=70, угол C=180-(40+70)=70.
3) Угол B смежный с углом CBA => угол CBA=180-120=60, угол ВСА по той же причине =180-110=70. Угол A=180-(60+70)=50.
4) Не могу разглядеть цифру, но угол В=90-угол А (т.к треугольник прямоугольный).
5) Угол В смежный с СВА => СВА=180-130=50, угол А=90-50=40.
6) Углы А и ВАС вертикальные => они равны. Угол В=180-(40+105)=35
7) Углы при основании в равнобедренном треугольнике равны, => А=С=70. В=180-(70+70)=40.
8) А=С=180-50/2=65
9) С и ВСА смежные => ВСА=180-125=55. А=С=55. В=180-(55+55)=70.