1).Параллелограмм — это такой четырехугольник, у которого противоположные стороны являются попарно параллельными.
Признаки параллелограмма
Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.
Параллелограмм это четырехугольник с равными и параллельными напротив сторонами
AB = CDAB=CD; AB || CD \Rightarrow ABCDAB∣∣CD⇒ABCD — параллелограмм.
Доказательство
2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.
Параллелограмм с равными противоположными сторонами
AB = CDAB=CD, AD = BC \Rightarrow ABCDAD=BC⇒ABCD — параллелограмм.
Доказательство
3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.
Параллелограмм с равными противоположными углами
\angle A = \angle C∠A=∠C, \angle B = \angle D \Rightarrow ABCD∠B=∠D⇒ABCD — параллелограмм.
Доказательство
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.
Параллелограмм с диагоналями, разделенными точкой пересечения
AO = OCAO=OC; BO = OD \RightarrowBO=OD⇒ параллелограмм.
Доказательство
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Предположим обратное, а именно, что прямые АВ и MN пересекаются. Значит через эти две прямые можно провести плоскость Альфа. Тогда точки А,В лежат в плоскости Альфа, так как если прямая принадлежит плоскости, то и все ее точки принадлежат этой плоскости. Получается точки А,В и прямая MN лежат в одной плоскости Альфа. Что противоречит условию. Значит наше предположение неверно, что означает, что прямые АВ и MN не пересекаются.