47
Объяснение:
Так как XYZ равносторонний треугольник, то его все углы равны по 60 градусов. => угол XZB = 103 + 60 = 163 градуса. Угол XZA = 180 - 163 = 17 градусов.
Не могу обозначит, т.к. на рисунке не установлена точка, но маленький треугольник внизу является прямоугольным, т.к. один из его углов является углом квадрата, который равняется, разумеется, 90 градусов. А значит, верхний угол этого треугольника будет равен 180-(90+17) = 73 градуса. Его вертикальный угол будет равен тоже 73 градуса по свойству вертикальных углов. Опять же, поскольку треугольник XYZ - равносторонний, то его угол ZXY равен 60 градусов.
Находим угол а. а = 180 - (60 + 73) = 47 градусов.
1) Чертим и отмечаем то, что нам известно
2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB.
3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B.
Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB.
4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания.
5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB.
6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем.
7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.)
Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный.
По теореме Пифагора находим их.
8) Записываем ответ.
Надеюсь, что доступно и понятно.