Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;
2 из них - с высотой 1;
грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.
проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).
сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);
ответ S = 4*1+4*1+4*2 = 16
ответ: например
Объяснение:Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin. (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(. ... ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin.