1. Фигура на плоскости, все точки которой обладают одним и тем же свойством, а ни одна из других точек плоскости этим свойством не обладает, называется геометрическим местом точек (г. м. т.) данного свойства на плоскости.
2. Биссектриса угла есть г. м. т., каждая из которых одинаково удалена от обеих сторон угла.
3. Серединный перпендикуляр— прямая, перпендикулярная данному отрезку и проходящая через его середину.
4. Перпендикуляр через середину отрезка есть г. м. т., каждая из которых одинаково удалена от концов отрезка.
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения. 2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
1. Фигура на плоскости, все точки которой обладают одним и тем же свойством, а ни одна из других точек плоскости этим свойством не обладает, называется геометрическим местом точек (г. м. т.) данного свойства на плоскости.
2. Биссектриса угла есть г. м. т., каждая из которых одинаково удалена от обеих сторон угла.
3. Серединный перпендикуляр— прямая, перпендикулярная данному отрезку и проходящая через его середину.
4. Перпендикуляр через середину отрезка есть г. м. т., каждая из которых одинаково удалена от концов отрезка.