На прямой отложены два равных отрезка АС и СВ. На отрезке СВ взята точка D, которая делит его в отношении 5:4, считая от точки С. Найдите расстояние между А и B, если CD=10 см.
Основание пирамиды ромб ABCD, НО - высота пирамиды, НМ - высота на грани пирамиды. Vпирамиды=⅓h*a² Необходимо найти сторону ромба. Площадь ромба через радиус вписанной окружности можно найти по двум формулам. S= 4r²/sinα=2аr. Найдём площадь по первой формуле, где альфа это острый угол ромба, синус 30 градусов равен ½. S=4×1:½=8 По второй формуле вычислим сторону ромба. 8=2а×1 а=4 Рассмотрим треугольник МОН, образованный высотой пирамиды, высотой грани и радиусом вписанной окружности. Он прямоугольный и угол НМО =45 градусов по условию, следовательно и второй угол равен 45 градусов по свойству о сумме углов треугольника. Треугольник равнобедренный и его катеты равны, т.е. МО=ОН=1см. V=⅓×1×16=16/3
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
ПустьCD - 5x, то DB-4x.
5х-4см
4х-n см
10:5 = 2
n=4*10/5=8cм-тогда CB=CD+DB=10+8=18
AB=2CB=2*18=36см
Объяснение:
Вот так и получилась.