1. если провести из угла С- прямого высоту СД (например), то рассматривая прямоугольный треугольник СДВ, где СВ- гипотенуза и =6 см (по условию), а угол В 30 град (т.к. по условию в треугольнике АСВ, АВ=2АС, и катет лежащий против угла в 30 град. равет 1\2 гипотенузы)
2. СД в треугольнике СДВ лежит против угла в 30 град. и равен 1\2 СВ=3 см.
3. значит высота треугольника АВС является радиусом окружности с центром в точке С и АВ по касательной проходит окружность в т. Д
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
1. если провести из угла С- прямого высоту СД (например), то рассматривая прямоугольный треугольник СДВ, где СВ- гипотенуза и =6 см (по условию), а угол В 30 град (т.к. по условию в треугольнике АСВ, АВ=2АС, и катет лежащий против угла в 30 град. равет 1\2 гипотенузы)
2. СД в треугольнике СДВ лежит против угла в 30 град. и равен 1\2 СВ=3 см.
3. значит высота треугольника АВС является радиусом окружности с центром в точке С и АВ по касательной проходит окружность в т. Д
нарисовала- все понятно, написала- жесть)))