Один корень квадратного уравнения 3+√5, другой 3-√5, уравнение получается такое
((х-3)-√5)*((х-3)+√5)=0
(х-3)²-(√5)²=0
х²-6х+9-5=0
х²-6х+4=0 - это уравнение, у которого рациональные коэффициенты, а длины катетов являются корнями этого уравнения. Тогда площадь треугольника равна(3+√5)(3-√5)/2=(9-5)/2=2/ед. кв./
Осталось порассуждать, почему именно так подобраны коэффициенты и будет ли этот треугольник единственным.
Я думаю, что рациональные коэффициенты могли быть получены в результате произведения сопряженных корней.
Как вариант..ответ 2.
На картинке есть чертеж, по которому идёт доказательство:
Рассмотрим произвольный треугольник, обозначив его вершины A, B и C. Проведём прямую параллельную прямой AC, обозначив её буквой a. Образовалось 3 угла: угол 1, угол 2 и угол между ними. Угол 1, образованный прямой а, и угол 1, один из углов треугольника -- накрест лежащие при прямых а и АС и секущей АВ, значит они равны (по Теореме о накрест лежащих углах при параллельных прямых и секущей). Также доказывается равенство углов 2 и 2. Очевидно, что угол 1 + угол 2 + угол В треугольника АВС = 180°, а так как угол1 = углу1, угол2 = углу2, то сумма углов в треугольнике равна 180°, что и требовалось доказать.
Объяснение:
Я думаю что.
3x+4x+5x=36
12x=36
x=3
a=3*3
b=3*4
C=3*5
9+12+15=36
По моему это так.