1) Так как треугольник ВАМ (расстояние между В и М соединяем линией) прямоугольный, воспользуемся теоремой Пифагора для нахождения МВ;
МВ²=МА²+АВ²
МВ²=1²+3²
МВ=√10 см
2) ∆МАД также прямоугольный, так что повторяем предыдущие шаги:
МД²=1²+4²
МД=√17 см
(Напоминаю, что длина и расстояние – одно и то же).
3) Диагонали ромба в точке пересечения делятся на двое, так что АД=АС=4 см.
4) По теореме Пифагора ВД²=ВА²+АД²;
ВД²=3²+4²
ВД=√25=5 см
(Диагонали ромба в точке пересечения создают прямой угол).
5) В 3-ем пункте мы нашли отрезок АС, так что теперь приступаем к теореме Пифагора:
МС²=1²+4²
МС=√17 см.
6) Площадь прямоугольного треугольника равна произведению его катетов деленое на два.
Так что S ∆mac = 4×1÷2 = 2 см²
Окружность описана, значит суммы ее противоположных сторон равны. Т.е. сумма боковых сторон равна сумме оснований. Так как трапеция равнобедренная то боковые стороны равны. Значит сумма боковых сторон равна сумме оснований равна 5+5=10 см.
Так как угол равен 30. То катет лежащий против нее равен половине гипотенузы, катетом будет высота трапеции, а гипотенузой боковая сторона. Значит высот равна 5:2=2,5 см.
Площадь трапеции равна произведению половине суммы оснований на высоту, значит: 10:5*2,5=12,5 кв.см
Объяснение:
смежный с внутренним углом А, то есть В=180градусов-А,
то ответ на вопрос: 360 градусов.
Объяснение: продолжим каждую сторону многоугольника
за вершину на некоторый отрезок и увидим, что при
переходе к каждой последующей вершине добавление
очередного внешнего угла соответствует повороту отрезка
на этот внешний угол. После обхода всего многоугольника
исходный отрезок совершит один полный оборот, т. е.
360 градусов.