Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).
Замечание. На основе теоремы 2 устанавливается теорема 3.
Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.
Из последней теоремы вытекает теорема 4.
Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
Объяснение:
1)Дополнительное построение: опустим из вершин тупых углов трапеции высоты на основание, тогда трапеция "разрежется" на прямоугольник со сторонами 10 см и h см, и два равных прямоугольных треугольника с гипотенузой 6 см и углом, прилежащим к нижнему основанию , равным a.
2)Найдём катеты прямоугольного треугольника: противолежащий катет-он же высота трапеции h = 6*sin a; прилежащий катет равен 6*cos a.
Тогда нижнее основание трапеции равно сумме двух прилежащих к известному углу катетов и 10 см.
3) Подставим в формулу S =(10+10+6*cos a*2)*6*sin a/2 =(20+12* cos a )*3*sin a;
4) P = 6*2+10 + 10+6*cos a*2 =32+12*cos a.