Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Для того, чтобы найти площадь прямоугольника мы должны найти длины сторон прямоугольника.
S = a * b;
Из условия нам известно, что периметр прямоугольника равен 80 см, а отношение сторон равно 2 : 3.
Вводим коэффициент подобия k и записываем длины сторон как 2k и 3k.
P = 2(a + b);
Составляем уравнение применив формулу для нахождения периметра:
2(2k + 3k) = 80;
2k + 3k = 80 : 2;
5k = 40;
k = 40 : 5;
k = 8.
Итак, стороны равны 2 * 8 = 16 см и 3 * 8 = 24 см.
Ищем площадь прямоугольника:
S = a * b = 16 * 24 = 384 см2.
Объяснение:
примерно так