Вот какие бывают задачи:
Объяснение:
1. Задачи на нахождение суммы
В вопросе задач такого типа всегда есть "Сколько всего?"
На школьном участке ребята посадили 7 лип и 4 клёна.
Сколько всего деревьев посадили ребята?
2. Задачи на нахождение остатка
В вопросе "Сколько ... осталось?"
Мама с Юлей посадили 7 кустов смородины. Затем они полили 4 куста.
Сколько кустов смородины осталось полить?
3. Задачи на увеличение или уменьшение числа на несколько единиц
В условии "на ... больше"
Папа с Володей собирали грибы. Папа нашёл 8 грибов, а Володя на 3 гриба больше.
Сколько грибов нашёл Володя?
В условии "на ... меньше"
У Ани было 10 рублей, а у Оли на 2 рубля меньше.
Сколько денег было у Оли?
4. Задачи на разностное сравнение
В вопросе "На сколько больше...?"
Краски стоят 15 рублей, а альбом 8 рублей.
На сколько рублей краски дороже альбома?
"На сколько меньше...?"
Дыня весит 3 кг, а арбуз 7 кг.
На сколько кг дыня легче арбуза?
5. Задачи на нахождение неизвестного слагаемого
В условии "Было...Стало..."
В вопросе "Сколько добавили?"
У Саши было 4 карандаша. Когда ему купили еще несколько карандашей, у него их стало 9.
Сколько карандашей купили Саше?
*ещё есть разные задачи*
Движение - это преобразование фигуры, которое сохраняет расстояние между ее точками.
Свойства движения:
1. Три точки, лежащие (нележащие) на одной прямой, при движении переходят в три точки, лежащие (нележащие) на одной прямой.
2. При движении прямая переходит в прямую - луч - в луч.
3. Отрезок движением переводится в отрезок.
4. Движение соханяет меры углов.
5. Последовательное выполнение двух движений есть движение.
Доказательство свойства 3. Как известно, отрезок - это часть прямой, ограниченная двумя точками. Т.к. по свойству 2 прямая переходит в прямую, то прямая, содержащая отрезок, переходит в прямую, содержащую, отрезок. А так движение сохраняет расстояние, от отрезок одной прямой переходит в равный ему отрезок другой прямой.
Решение в файлах, смотрите ниже