Построение на рисунке.
Объяснение:
1. Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же этих векторов есть вектор с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го.
Разделим вектор CB на 3 равные части. Для этого проведем из точки С луч "n" и отложим на нем циркулем 3 РАВНЫХ отрезка произвольной длины. Конец B' третьего отрезка соединим с точкой В, а из концов первого и второго отрезка проведем прямые, параллельные прямой BB'. Эти прямые и разделят вектор СВ на три равные части (теорема Фалеса).
Тогда вектор СЕ = (2/3)*СВ. Из конца Е вектора СЕ проведем прямую, параллельно CD. Эта прямая пересечет сторону CD в точке F. Вектор EF равен вектору CD. Тогда вектор CF = CE+EF или
CF = (2/3)*CB + CD, что и необходимо было построить.
2. Для получения вектора разности двух векторов (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом - конец вектора (a) (уменьшаемое). Тогда вектор разности векторов ВА и ВС есть вектор СА.
Разделим вектор СА на 4 равных части указанным выше используя луч СA' (добавив к 3 полученным ранее равным отрезкам четвертый BA').
Тогда вектор CG = (1/4)*СА = (1/4)*(ВА - ВС), что и необходимо было построить.
Дано:
параллелограмм ABCD
угол BAE = 60°
AE = ED
P(ABCD) = 48
Найти: BD
P = 2(a + b) = 2AD + 2AB = 48
AD + AB = 24
треугольник ABE — прямоугольный, а значит сумма углов равна 180°.
угол BAE = 60° по заданию,
угол AEB = 90°, так как BE — высота и перпендикулярна AD,
угол ABE = 180° – 60° – 90° = 30°
По свойству прямоугольного треугольника, катет, лежащий напротив угла 30°, равен половине гипотенузе:
AE = AB / 2
AE = ED = AD / 2 по заданию
AD / 2 = AB / 2 =>
AD = AB =>
параллелограмм ABCD — равносторонний =>
AD + AB = 24
2*AD = 24
AD = 12
Треугольник ABD — равнобедренный, значит
AB = BD = 12
ответ: 12