Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
3.Пусть угол ВАО = å, тогда угол DAO тоже å
Пусть угол АВО = b, тогда угол СВО тоже b
У параллелограмма сумма двух соседствующих углов = 180°
=> 2å + 2b = 180°, сократим вдвое:
å + b = 90° ( угол ВАО + угол АВО )
Тогда: В треугольнике АВО угол АОВ = 180° - (угол ВАО + угол АВО) = 180° - 90° = 90° что и требовалось доказать.
6.АВСД - параллелограмм, тогда АВ || СД, ВС || АД. АВ=СД ВС=АД
Угол АВР = углу СРВ ( накрест лежащие углы при АВ || СД, ВР секущая )
Тогда треугольник РВС - равнобедренный, тогда ВС = СР = 4
АВ=СД, СД = 4+1=5 тогда они равны 5
АД=ВС, ВС = 4, тогда они равны 4
Периметр: 4 + 4 + 5 + 5 = 18см
9. треугольник АКВ - равнобедренный, тогда угол АКВ = углу АВК = 50°, тогда угол А = 180° - (угол АКВ + угол АВК) = 180° - 100° = 80°
Две соседствующие углы в параллелограмме в сумме дают 180°,
тогда угол В = 180° - 80° = 100°.
Противорасположные углы в параллелограмме равны, тогда уголА = углуС = 80°
уголВ = углуД = 100°
ответы: 6)18см
9)уголА = 80°
уголВ = 100°
уголС = 80°
уголД = 100°