Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
HC=
Медиана делит противолежащую сторону пополам, значит AC=10
ответ: 10
2) ABCD ромб, у ромба все стороны равны, диагонали точкой пересечения делятся пополам и пересекаются под прямым углом, значит половины от диагоналей соответственно равны 2 и 1.5, по теореме Пифагора найдем гипотенузу (искомую сторону ромба). AB=
ответ: 2.5 - сторона, площадь - 6.
3) Пусть 1-ая сторона будет 3x, 2-ая сторона 4x, по теореме пифагора найдем стороны
Значит 1-ая сторона равна 3*1=3
А 2-ая сторона равна 4*1=4
ответ: 3;4