М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ксюша7970
Ксюша7970
10.05.2021 10:10 •  Геометрия

1.с точки к плоскости проведены две наклонные, равные 3 корня из двух каждая. угол между наклонными равен 60 градусов, а угол между проекциями - прямой.найти расстояние от этой точки до плоскости. 2.точка м находится на расстоянии 2 см от каждой стороны правельно треугольника и на расстоянии 1 см от плоскости треугольника. найти стороны треугольника.

👇
Ответ:
Lulu84
Lulu84
10.05.2021

1. Тут можно много решений сделать, но вообще то задача устная.

Если взять куб со стороной 3 - пусть это ABCDA1B1C1D1, провести диагонали граней А1В и А1D, они как раз и будут такими наклонными к плоскости основания ABCD. Все что надо сообразить - что треугольник А1ВС равносторонний, поэтому угол между А1В и А1С равен 60 градусам. Понятно, что проекции диагоналей - это строны квадрата в основании. То есть выполнены все условия задачи. (Можно считать, что я "достроил" фигуру из наклонных и проекций до куба с сечением по двум пересекающимся диагоналям смежных граней)

Теперь очевидно, что расстояние от А1 до основания ABCD равно стороне куба 3.

2. Поскольку точка М равноудалена от сторон треугольника, то и её проекция - точка О равноудалена от сторон, то есть эта проекция - центр вписанной окружности. Если через точку М провести плоскость перпендикулярно одной из сторон - например АВ, то эта плоскость очевидно пройдет через О (МО - перпендикуляр к плоскости треугольника). Если обозначить за К точку пересечения этой плоскости со стороной АВ, то треугольник МОК прямоугольный, МО = 1, МК = 2 (ясно, что МК перпендикулярно стороне АВ). Отсюда угол МКО = 30 градусов.

Второй катет, который очевидно равен √3 - это радиус вписанной в АВС окружности. Отсюда легко сосчитать, что высота треугольника равна 3√3, а сторона равна 6.

(В правильном треугольнике центры вписанной и описанной окружностей совпадают с точкой пересечения медиан, то есть r = h/3; R = 2h/3; h = a√3/2)

4,8(57 оценок)
Ответ:
gryadkins
gryadkins
10.05.2021

Во вложении

--------------------------------------------------------------------


1.с точки к плоскости проведены две наклонные, равные 3 корня из двух каждая. угол между наклонными
1.с точки к плоскости проведены две наклонные, равные 3 корня из двух каждая. угол между наклонными
4,7(6 оценок)
Открыть все ответы
Ответ:
Vivitek31
Vivitek31
10.05.2021

 Пусть ABCD - прямоугольная трапеция, в которую вписана окружность с центром в т. О.

ВС - основание трапеции
AD - основание трапеции
∠A = 90°
DE = 16 см
AE = AM = BM = BK = KO = MO = EO = r = 12cм

AD = AE + DE

AD = 12 + 16 = 28 (cм)

В прямоугольном треугольнике ODE:
катет OE = 12см 
катет DE = 16 см
OD - гипотенуза
по теореме Пифагора
OD² = OE² + DE²
OD² = 12² + 16² = 400
OD = √400 = 20 (см) 

Свойство касательных: Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности ⇒ 
⇒ ED = FD = 16cм и CK = CF как отрезки касательных, ОD - биссектриса ∠ADC, OC - биссектриса ∠BCD

Сумма углов трапеции, прилежащих к боковой стороне равна 180° ⇒
 ∠BCD + ∠ADC = 180° ⇒ ∠DCO + ∠CDO = 180 / 2 = 90 (°)
Сумма углов треугольника равна 180° ⇒ 
⇒ ∠COD = 180 - (∠DCO + ∠CDO ) = 180 - 90 = 90(°)
В прямоугольном треугольнике COD

∠OCD= 180 - 90 - ∠CDO ⇒ ∠OCD = 90 - ∠CDO

В прямоугольном треугольнике OFC

∠OCF = 180 - 90 - ∠COF = 90 - ∠COF ⇒ ∠CDO = ∠COF 

В прямоугольном треугольнике DFO

∠DOF = 180 - 90 - ∠CDO = 90 - ∠CDO = ∠OCD 

Треугольники DFO u OFC подобны по трем углам 

∠DFO = ∠OFC = 90° т.к. радиус окружности, проеведенный в точку касания, перпендикулярен касательной 

∠CDO = ∠COF

∠DOF = ∠OCD 

У подобных треугольников углы равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника. ⇒ 

DO : OC = DF : OF = OF : CF

20 : OC = 16 : 12 = 12 : CF

16 : 12 = 12 : CF

Свойство пропорции: произведение крайних членов равно произведению средних

16СF = 12*12

16CF = 144

CF = 144 / 16

CF = 9 (cм), тогда CK = 9 см

BC = BK + CK

BC = 12 + 9 = 21 (cм)

Если в прямоугольную трапецию вписана окружность, ее площадь равна произведению оснований.

S = AD * BC

S = 28 * 12 = 336 (см²)


(не смогла нарисовать ровные дужки для обозначения равных углов, поэтому обозначила их цифрами)

 -----------------------------------------------------------------------------


Найдите площадь прямоугольной трапеции, в которой точка соприкосновения вписанного в нее круга делит
4,4(72 оценок)
Ответ:
lavanda16
lavanda16
10.05.2021

 Пусть ABCD - прямоугольная трапеция, в которую вписана окружность с центром в т. О.

ВС - основание трапеции
AD - основание трапеции
∠A = 90°
DE = 16 см
AE = AM = BM = BK = KO = MO = EO = r = 12cм

AD = AE + DE

AD = 12 + 16 = 28 (cм)

В прямоугольном треугольнике ODE:
катет OE = 12см 
катет DE = 16 см
OD - гипотенуза
по теореме Пифагора
OD² = OE² + DE²
OD² = 12² + 16² = 400
OD = √400 = 20 (см) 

Свойство касательных: Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности ⇒ 
⇒ ED = FD = 16cм и CK = CF как отрезки касательных, ОD - биссектриса ∠ADC, OC - биссектриса ∠BCD

Сумма углов трапеции, прилежащих к боковой стороне равна 180° ⇒
 ∠BCD + ∠ADC = 180° ⇒ ∠DCO + ∠CDO = 180 / 2 = 90 (°)
Сумма углов треугольника равна 180° ⇒ 
⇒ ∠COD = 180 - (∠DCO + ∠CDO ) = 180 - 90 = 90(°)
В прямоугольном треугольнике COD

∠OCD= 180 - 90 - ∠CDO ⇒ ∠OCD = 90 - ∠CDO

В прямоугольном треугольнике OFC

∠OCF = 180 - 90 - ∠COF = 90 - ∠COF ⇒ ∠CDO = ∠COF 

В прямоугольном треугольнике DFO

∠DOF = 180 - 90 - ∠CDO = 90 - ∠CDO = ∠OCD 

Треугольники DFO u OFC подобны по трем углам 

∠DFO = ∠OFC = 90° т.к. радиус окружности, проеведенный в точку касания, перпендикулярен касательной 

∠CDO = ∠COF

∠DOF = ∠OCD 

У подобных треугольников углы равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника. ⇒ 

DO : OC = DF : OF = OF : CF

20 : OC = 16 : 12 = 12 : CF

16 : 12 = 12 : CF

Свойство пропорции: произведение крайних членов равно произведению средних

16СF = 12*12

16CF = 144

CF = 144 / 16

CF = 9 (cм), тогда CK = 9 см

BC = BK + CK

BC = 12 + 9 = 21 (cм)

Если в прямоугольную трапецию вписана окружность, ее площадь равна произведению оснований.

S = AD * BC

S = 28 * 12 = 336 (см²)


(не смогла нарисовать ровные дужки для обозначения равных углов, поэтому обозначила их цифрами)

 

4,6(38 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ