6
если < 1 = < 2, то a || b (по свойств паралельности прямых
если < 2 + < 3 = 180°, то c || b (по тому - же свойству)
т. к. a || b и c || b, то a || c (по аксиоме паралельных прямых)
7
m || n || k (ничего доказывать не надо)
8 сам не знаю
9
т. к. a || b, то < 1 + < 2 = 180°
мы знаем, что < 1 больше < 2 в 2 раза. получаем уравнение, где 2x = < 1, x = < 2
2x + x = 180
3x = 180
x =60
< 2 = 60°, < 1 = 60° × 2 = 120°
остальные углы можно найти по свойству равенства углов и смежных углов
рассмотрим треугольники СВО и ОВД мы видим что СО = ОД по условию задачи , углы прямые (СОВ = ДОВ) сторона ОВ общая , значит треугольники СОВ и ДОВ равны по двум сторонам и углу между ними то есть по 1 признаку равенства треугольников . Рассмотрим треугольники АОС и АОД , АО- общая сторона , СО = ОД по условию задачи , а углы равные ( по свойству смежных углов и вертикальных углов) значит треугольники АОС = АОД по двум сторонам и углу между ними то есть тоже по 1 признаку равенства треугольников. Теперь если треугольник АОС = треугольнику АОД и треугольник СОВ = треугольнику ДОВ значит треугольники АВС и АВД равные