1. Немає даних2. СД=корінь(АД *ВД)=корінь(36*49)=42, 4. периметр1(Р1)=72, периметр2(Р2)=7+8+9=24, Р1/Р2=k=72/24=3, сторона1=3*7=21, сторона1-2=3*8=24, сторона1-3=3*9=27, 5. гіпотенуза=корінь(катет1 в квадраті+катет2 в квадраті)=корінь(36+64)=10, радіус кола=1/2гіпотенузи=10/2=5, 6. Трапеція АВСД, АВ=10ВС=9, СД=17, АД=30, проводимо висоти ВН і СК на АД, ВН=СК, НВСК-прямокутник ВС=НК=9, КД=х, АН=АД-НК-КД=30-9-х=21-х, трикутник АВН, ВН в квадраті=АВ в квадраті-АН в квадраті=100-441+42х-х в квадраті, трикутник КСД СК=СД в квадраті-КД в квадраті=289-х в квадраті, 100-441+42х-х в квадраті=289-х в квадраті, х=15=КД, АН=21-15=6, ВН=корінь(100-36)=8
Пусть сторона АВ перпендикулярна к прямой 2x–y–1=0.
Это уравнение можно выразить с угловым коэффициентом:
y = 2x – 1.,Тогда угловой коэффициент к(АВ) = -1/2.
Уравнение АВ: у = (-1/2)х + в. Для определения в подставим координаты точки А: -3 = (-1/2)*5 + в, тогда в = -3 + (5/2) = -1/2.
Уравнение АВ: у = (-1/2)х - (1/2).
Сторона АС перпендикулярна к прямой 13x+4y–7=0.
Это уравнение можно выразить с угловым коэффициентом:
y = (-13/4)x + (7/4).Тогда угловой коэффициент к(АС) = 4/13.
Уравнение АС: у = (4/13)х + в. Для определения в подставим координаты точки А: -3 = (4/13)*5 + в, тогда в = -3 - (20/13) = -59/13.
Уравнение АС: у = (4/13)х - (59/13).
Точка С - это пересечение прямых АС и 2x–y–1=0. Приравняем:
(4/13)х - (59/13) = 2x – 1.
Координаты точки С: х = (-23/11), у = (-57/11).
Координаты точки пересечения высот
y=ax+b высот Точка D(пер_высот)
a b x y
h(AC) -3,25 1,75 0,52381 0,04762
h(AB) 2 -1.
Координаты точки В находим как пересечение:
y=ax+b стор и выс Точка В
a b x y
АВ -0,5 -0,5 0,81818 -0,90909
h(AС) -3,25 1,75.
Координаты точки В: х = 0,81818, у = -0,90909.