В АВС сторона АС = 24см. Сторона АВ разделена на 3 равные части точками М и К. Через точки деления проведены отрезки МР и КЕ, параллельные стороне АС и
пересекающие сторону ВС в точках Е и Р. Найдите длины отрезков МР и КЕлов
fbc сторона AC равно 24 см сторона AB разделена на три равные части точками M и K через точки деления проведены отрезки mе бык параллельные стороны AC и
Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники a - длина ребра тетраэдра Н=? пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины высота правильного треугольника вычисляется по формуле: OA=2√6 прямоугольный ΔМОА: Гипотенуза МА=6√2 см катет АО=2√6 см катет МО=Н, найти по теореме Пифагора: МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники a - длина ребра тетраэдра Н=? пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины высота правильного треугольника вычисляется по формуле: OA=2√6 прямоугольный ΔМОА: Гипотенуза МА=6√2 см катет АО=2√6 см катет МО=Н, найти по теореме Пифагора: МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
Объяснение:
fbc сторона AC равно 24 см сторона AB разделена на три равные части точками M и K через точки деления проведены отрезки mе бык параллельные стороны AC и