Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны. Свойства параллелограмма: 1. Противоположные стороны и противоположные углы параллелограмма равны. 2. Диагональ параллелограмма делит его на два равных треугольника. 3. Диагонали параллелограмма делятся точкой пересечения пополам, эта точка является центром симметрии параллелограмма. 4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. 5. Высотой параллелограмма называется перпендикуляр, опущенный из вершины параллелограмма на прямую, содержащую противоположную сторону. 6. Параллелограмм можно вписать в окружность в том случае, если он - прямоугольник. 7. В параллелограмм можно вписать окружность в том случае, если он – ромб.
Не могу не воспользоваться простой формулой, чтобы все решилось в одно действие) : S = a^2*sinβ , где a - сторона ромба (все стороны равны как и у квадрата), угол β - любой угол в ромбе ( подойдет, так как существуют формулы приведения) Подставим и решим: S = 100*0,588= 58,8 см^2 (синус как в предыдущей задаче)
ответ: 58,8 см^2
Второй решения:
Проведем высоту к любой стороне ромба ( где есть известный угол) Затем рассмотрим получившийся треугольник: 10/sin90 = h/sin36 => h = (10 * 0,588) / 1 = 5,88 Sромба = 5,88 * 10 = 58,8 см^2
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник, АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны.
Свойства параллелограмма:
1. Противоположные стороны и противоположные углы параллелограмма равны.
2. Диагональ параллелограмма делит его на два равных треугольника.
3. Диагонали параллелограмма делятся точкой пересечения пополам, эта точка является центром симметрии параллелограмма.
4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
5. Высотой параллелограмма называется перпендикуляр, опущенный из вершины параллелограмма на прямую, содержащую противоположную сторону.
6. Параллелограмм можно вписать в окружность в том случае, если он - прямоугольник.
7. В параллелограмм можно вписать окружность в том случае, если он – ромб.
S=aha
Ha =b sinα
S=ab sinα
S=0,5 d1d2sinφ