Сторона a(n) правильного n-угольника связана с радиусом R описанной окружности формулой
a(n)=2R sin(180:n)=2Rsin(π:n).
Найдем радиус окружности из формулы длины окружности
C=2πR
R=C:2π
R=12π:2π=6
a(n)=2R sin180:n=2Rsin(π:n)
Подставим известные значения:
6√3=12*sin(180:n)
sin(180:n)=6√3):12=√3):2
√3):2- синус 60 градусов.
180:n =60
n=3
Этот многоугольник - равносторонний треугольник.
Проверка:
Высота этого треугольника по формуле h=а√3):2
h=6√3*√3):2=9
Радиус описанной окружности равен 2/3 высоты:
9:3*2=6, что соответствует условию задачи.
∠А = 55°
Объяснение:
ВМ является медианой, следовательно АМ = МС - согласно условию задачи.
Но так как АМ = ВМ (также согласно условию задачи), то МС = ВМ, в силу чего треугольник ВМС - равнобедренный и ∠МВС = ∠С =35°.
Следовательно, угол ВМС равен:
180 - 35 - 35 = 110°.
Из этого следует, что в треугольнике АВМ угол АМВ, смежный с углом ВМС, равен:
180 - 110 = 70°.
Треугольник АВМ также является равнобедренным, т.к. АМ = ВМ, и если угол при его вершине равен 70°, то углы при основании (∠А и ∠АВМ) равны:
∠А = ∠АВМ = (180 - 70) : 2 = 110 : 2 = 55°
ответ: ∠А = 55°