Как известно, диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали. Точку пересечения диагоналей обозначим О. Проведем ОЕ перпендикулярно ВД. Соединим В и Е. В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. Треугольник ВЕД - равнобедренный. Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД) Синус угла АВЕ=а:2а=0,5, и это синус угла с градусной мерой 30°. Второй угол, на который диагональ ВД поделила угол АВС, равен ∠СВЕ=90°-30°=60° Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.
Значит так. Обзовём параллелограмм АВСД. Пусть угол А - острый, равен 30 градусов. Высота, проведённая из тупого угла B к стороне АД равна 2 см. Тогда мы получаем треугольник АВН( Н - конец высоты) прямоугольный(т.к. ВН - высота, угол ВНА 90 градусов). Тогда сторона ВН - катет, лежащий против угла в 30 градусов и равен половине гипотенузы. Т.е. сама гипотенуза АВ равна 2ВН. АВ - 2* 2 см = 4 см. Теперь мы можем найти площадь.Умножив АВ на вторую высоту, проведённую к стороне СД. S параллелограмма равна АВ*СД(СД = 3 см по условию) = 4 см *3 см= 12 см квадратным.
1. 2√19 см.
2. 2√3 см.
3. ∠С=120°, BC=3,55 см, АС=6,68 см.
4. 14,2 см.
Объяснение:
По теореме косинусов:
CosC=(AC²+BC²-AB²)/2BC*AC; Cos120°= -1/2;
AB²=AC²+BC²-2AC*BC*Cos120°=4²+6²-2*4*6*(-1/2)=16+36+24=76;
AB=√76=2√19 см.
***
2. По теореме синусов:
BC/SinA=AB/SinC; BC=3√2; SinA=Sin60°=√3/2; Sin45°=√2/2.
AB=BC*SinC/SinA=3√2(√2/2)/(√3/2)=2√3 см.
***
∠С=180°-(∠A+∠B)=180°-(20°+40°)=180°-60°=120°.
По теореме синусов:
a/SinA=b/SInB=c/SinC; Sin120°=√3/2; Sin20°=0,342; Sin40°=
a=c*SinA/SinC=9*0,342/0,866=3,55см.
b=c*SinB/SinC=9*0,643/0,866=6,68 см.
***
4. Радиус окружности, описанной около треугольника находят по формуле:
R=(abc)/4√p(p-a)(p-b)(p-c);
p=(a+b+c)/2=(17+25+28)/2=70/2=35 см.
R=(17*25*28)/4√35(35-17)(35-25)(35-28)= 11 900/4√35*18*10*7=11 900/4√44 100=11 900/4*210=11 900/840=14,2 см.