Теорема: сумма углов треугольников равно 180градусов.
Док-во:Рассмотрим произвольный треугольник АВС и докажем,что угол А+угол В+угол С=180 градусов. Проведем через вершину В прямую "а",параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при параллельных прямых "а" и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4=углу 1, угол 5= углу 3. Очевидно,сумма углов 4,2 и 5 равна развернутому углу с вершиной В, т.е. угол 4+угол 2+угол 5=180 градусам. Отсюда,учитывая равенства,получаем: угол 1+угол 2+угол 3=180градусам. Теорема Доказана.
А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
Внешний угол треугольника, это угол смежный с углом этого треугольника
Сумма углов в треугольнике равна 180 градусов, и развернутый угол равен 180 градусов, известный угол возьмем за X, получаем сумма остальных углов равна 180-Х, и внешний угол треугольника равен 180-Х, следовательно внешний угол треугольника равен сумме 2 гулов не смежных с ними.