1) диагональ d осевого сечения цилиндра наклонена к плоскости основания под углом a . вычислите обьем цилиндра 2)прямоугольный треульник с катетом а и прилежащим углом а вращается вокруг гипотенузы.найдите обьем фигуры вращения
1. Осевое сечение цилиндра - прямоугольник, одна сторона которого равна высоте цилиндра, другая - диаметру основания. Из прямоугольного треугольника АВС: H = d · sinα 2R = d · cosα, ⇒ R = d/2 · cosα. V = πR²H = π · d²/4 · cos²α · d · sinα = πd³ · sinα · cos²α / 4
2. При вращении прямоугольного треугольника вокруг гипотенузы образуются два конуса с общим основанием, радиус которого равен высоте треугольника, опущенной на гипотенузу. ΔАСН: R = a·sinα h₁ = a·cosα По свойству высоты прямоугольного треугольника, ∠ВСН = ∠САН = α. ΔВСН: h₂ = R·tgα = a·sinα · tgα = a · sin²α / cosα V₁ = 1/3 · πR²h₁ V₂ = 1/3 · πR²h₂ V = V₁ + V₂ = 1/3 · πR² (h₁ + h₂) V = 1/3 · π · a²·sin²α (a·cosα + a·sin²α/cosα) V = 1/3 · π · a³·sin²α ((cos²α + sin²α) / cosα) V = πa³·sin²α / (3cosα)
Как известно, в равнобедренном треугольнике попарно равны боковые стороны и углы при основании. Доказательство будем строить именно на этом.
Предположим, что тр-к ABC - равнобедренный
1) Проведём высоту AK к основанию BC. По св-ву равнобедр. тр., она будет также медианой и биссектрисой. Значит, тр-ки ABK b ACK будут равны по стороне и двум прилежащим углам (половины основания, углы при основании и два прямых угла).
2) Проведём высоты BM и CH к сторонам АС и АВ соответственно. Три высоты пересекутсся в точке О, и все они будут делиться по соотношению 2:1, считая от вершин. В 1 действии мы доказали, что тр. ABK и ACK равны. Значит, если высоты пересекаются в одной точке , лежащей на общей стороне AK этих двух треугольников, то отрезки высот - BO-OM и CO-OH будут равны (т.к. не смещена линия симметрии): BO=CO OM=OH
Если равны все отрезки высот, то буду равны и целые высоты: BM = CH, чтд.
Оказалось непросто, даже почти забанили за самоуверенность. Но решение простое. Итак: Треугольник ABC. Высота BD. Обозначим длину искомого отрезка - х (EF). BD=4, AD=1, DC=8, Задача сводится к тому, чтобы прировнять площади двух получившихся фигур, S1 (маленький треугольник CEF) и S2 (сложная фигура, состоящая из треугольника ABD и прямоугольной трапеции BEFD. Отношение сторон треугольника ECF равно отношению в BCD. Следовательно если EF=x, то CF=2x. Находим площадь S1=(x*2x)/2=x²; То есть S2=S1, но вместе с тем S2+S1=Sобщ. Sобщ=(4*8)/2+(4*1)/2=18; Sобщ=2S1=2x²=18; x²=9; x=3. ответ: длина отрезка = 3.
Из прямоугольного треугольника АВС:
H = d · sinα
2R = d · cosα, ⇒ R = d/2 · cosα.
V = πR²H = π · d²/4 · cos²α · d · sinα = πd³ · sinα · cos²α / 4
2.
При вращении прямоугольного треугольника вокруг гипотенузы образуются два конуса с общим основанием, радиус которого равен высоте треугольника, опущенной на гипотенузу.
ΔАСН: R = a·sinα
h₁ = a·cosα
По свойству высоты прямоугольного треугольника, ∠ВСН = ∠САН = α.
ΔВСН: h₂ = R·tgα = a·sinα · tgα = a · sin²α / cosα
V₁ = 1/3 · πR²h₁
V₂ = 1/3 · πR²h₂
V = V₁ + V₂ = 1/3 · πR² (h₁ + h₂)
V = 1/3 · π · a²·sin²α (a·cosα + a·sin²α/cosα)
V = 1/3 · π · a³·sin²α ((cos²α + sin²α) / cosα)
V = πa³·sin²α / (3cosα)