В прямоугольном треугольнике, образованным апофемой боковой грани и высотой пирамиды, апофема гипотенуза , а угол при вершине = 30 град.
Напротив него лежит катет = 1/2 гипотенузы = 4/2=2 см
Этот катет является частью медианы (высоты, биссектрисы) трееугольника основания и он раве 1/3 все медианы, т.к. в точке пересиченя медианы деляться в отношении 2:1 начиная с вершины. В правильном треугольнике центром треугольника является точка пересичения высот (медиан..).
Значит вся высота = 2 х 3 = 6 см.
В трееугольнике основания углы = по 60 град.
Сторона треугольника = гипотенузе прямоугольногро треугольника основания = высота (катет) : sin a = 6 : (корень 3/2) = 4 х корень3
Площадь основания = 1/2 х сторона треугольника х высоту = 1/2 х 4 х корень3 х 6 =
= 12 х корень 3
Периметр треугольника = 4 х корень3 х 3 = 12 корень3
Площади боковых граней = 1/2 периметр основания х апофему = 1/2 х 12 корень3 х 4 =
=24 корень 3
Общая площадь = площадь осннования + площадь боковой поверхности= 12 х корень 3 + 24 корень 3 = 36 корень3
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Иван I Данилович (Калита) (?-31 МР 1340) - князь московский с 1325, Великий князь владимирский с 1328. Вступил на престол после гибели в Орде Юрия Даниловича и передачи ярлыка в Тверь (1325 20 НЯ) . Сыграл большую роль в укреплении влияния и расширении территории Московского княжества. Покупал у бедных князей деревни, сёла и даже города (Белозёрск, Галич, Углич) . В 1332 начал борьбу с Новгородом за "дани новгородские", отвоевал Торжок. Первым из русских князей называл себя "великим князем всея Руси". Его политику поддерживал митрополит Пётр, подготовивший перенос митрополичьей кафедры из Владимира в Москву (Москва становится религиозным центром Руси) . После разгрома москвичами Твери в наказание за убийство тверичами ханских баскаков, Иван получил ярлык на великое княжение (Москва становится политическим центром Руси) . Собирая дань для Орды, он удерживал часть этой дани для собственной казны. Обеспечил длительный мир для Московского княжества. Разделил свои земли м. сыновьями Симеоном, Иваном, Андреем, отдал Москву им в общее пользование. Погребён в Даниловском монастыре.
В прямоугольном треугольнике, образованным апофемой боковой грани и высотой пирамиды, апофема гипотенуза , а угол при вершине = 30 град.
Напротив него лежит катет = 1/2 гипотенузы = 4/2=2 см
Этот катет является частью медианы (высоты, биссектрисы) трееугольника основания и он раве 1/3 все медианы, т.к. в точке пересиченя медианы деляться в отношении 2:1 начиная с вершины. В правильном треугольнике центром треугольника является точка пересичения высот (медиан..).
Значит вся высота = 2 х 3 = 6 см.
В трееугольнике основания углы = по 60 град.
Сторона треугольника = гипотенузе прямоугольногро треугольника основания = высота (катет) : sin a = 6 : (корень 3/2) = 4 х корень3
Площадь основания = 1/2 х сторона треугольника х высоту = 1/2 х 4 х корень3 х 6 =
= 12 х корень 3
Периметр треугольника = 4 х корень3 х 3 = 12 корень3
Площади боковых граней = 1/2 периметр основания х апофему = 1/2 х 12 корень3 х 4 =
=24 корень 3
Общая площадь = площадь осннования + площадь боковой поверхности= 12 х корень 3 + 24 корень 3 = 36 корень3