Из того, что сумма углов при основании АД равна 90º, следует, что продолжение АВ и СД пересекаются под углом 90º. Достроим трапецию до прямоугольного треугольника АКД треугольники ВКС и АКД - подобны. ∠ К в них - общий,ВС||АД,∠ КСВ=∠КДА по свойству углов при пересечении параллельных прямых секущей. Коэффициент подобия АД:ВС=46:23=2 Тогда АК:ВК=2 АК=АВ+ВК (АВ+ВК):ВК=2 (10+ВК):ВК=2 10+ВК=2ВК ВК=10 Пусть точка касания окружности и прямой СД будет М Соединим центр О окружности с вершиной В трапеции и точкой касания М. Так как углы ОМК и АКМ прямые, ОМ и АК - параллелльны. Рассмотрим треугольник АОВ.Его стороны АО и ОВ, являясь радиусами окружности, равны. Треугольник АОВ - равнобедренный. Проведем в нем высоту ОН.Эта высота - и медиана ( треугольник ведь равнобедренный).Следовательно, НВ =АВ/2=10/2=5. Рассмотрим четырехугольник НКМО.Это прямоугольник с равными сторонами НК=МО.МО - радиус окружности. НК=НВ+ВК=5+10=15 МО=НК=15 Радиус окружности равен 15.
Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.