Угол между скрещивающимися прямыми.
Чтобы определить угол между скрещивающимися прямыми, нужно совершить параллельный перенос так ,чтобы у прямых появилась точка пересечения.То есть, прямые должны находиться в смежных гранях и иметь точку пересечения.Строго говоря,мы имеем теперь не скрещивающиеся прямые, а пересекающиеся.Угол между ними определяем по величине двугранного угла образованного гранями куба.Мерой двугранного угла является его линейный угол.
Объяснение:
а)90 град.
б)45 град.
в)90 град.
г)90 град.
д)45 град.
е)90 град.
СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Исходя из этого:
1) |AB+BC|=|AC|, то есть |AB+BC|= а.
2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3.
|AB+AC|=а*√3.
3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1.
|AB+CB|=а*√3.
4) |ВА-ВC|=|CA|=а.
5) |АВ-АC|=|CВ|=а.