№1
Рассмотрим треугольники FMN и FNK. Эти треугольники равны по первому признаку равенства треугольников(по двум сторонам и углу между ними). Сторона FK-общая,
сторона FM=NK, докажем это - по условию EF=EK (треугольник равобедренный), М-середина стороны EF, значит FM=1/2EF, N-середина ЕК, значит NK=1/2ЕК, значит FM=NK, а угол F=К, так треугольник FEK равнобедренный, то углы при основании равны. А так треугольники равны, то и все стороны у треугольников равны (третий признак равенства), значит сторона FN=KM
№2
В этой задачи перепроверь, что надо доказать, треугольника ЕРЕ не существует, уточни условие и я дорешаю.
Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.