Для начала вспомним, что тупой угол - это угол с градусной мерой больше 90° и меньше 180°. Из одной точки можно пустить три луча, которые между собой образуют 3 тупых угла.
Пустим 4-й луч вблизи одного из трёх лучей, у нас добавится дополнительно 2 тупых угла. 5-й луч пустим вблизи второго из числа первых трёх, дополнительно образуются 3 тупых угла. Наконец, пускаем 6-й луч вблизи третьего, получив дополнительно 4 тупых угла. У нас будет получаться как бы три пучка близко расположенных лучей в каждом пучке.
Считаем сколько получилось тупых углов после добаления к первым трём лучам ещё трёх лучей. 3 луча было, плюс 2, плюс 3 и плюс 4, всего 12 лучей.
Итак, для 3-х лучей - 3 тупых угла; для 6 лучей - 12 тупых углов.
Рассуждаем аналогично, добавляя по очереди ещё 3 луча. Добавятся сначало 4 угла, затем 5 и, наконец, 6; т.е. всего добавится 15 тупых углов. А всего для 9 лучей будет 27 тупых углов.
Точно также, считая для 12 лучей, получим дополнительно 6+7+8 = 21 тупых угла, а всего - 48.
Можно было бы и далее продолжать таким но мы замечаем закономерность.
Пусть а1 = 3 - это первый член последовательности. Используя предыдущее значение (рекуррентно), можно вычислить следующее значение по формуле:
, где n - число лучей кратное 3.
Пробуем вычислить по этой формуле:
Итак, ответ найден. Для 27 лучей возможно максимум 243 тупых угла.
Так считать долго, можно увидеть формулу для прямого расчёта:
По этой формуле можно считать для любого количества лучей, кратное трём.
2. Диагональное сечение призмы - прямоугольник ВВ1D1D.
АА1=AD=2√3. Значит высота призмы равна 2√3.
Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²).
АВ=DC (противоположные стороны основания).
BD=√(12+25) = BD=√37.
Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111.
3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты.
ВН=Saa1b1b/AA1 = 80/10=8см.
СН=Scaa1c1/AA1 = 40/10=4см.
По теореме косинусов найдем сторону ВС:
ВС=√64+16-2*32*(-1/2) = √112 = 4√7.
Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра.
Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см.
Sбок=(12+4√7)*10= 40(3+√7)см².