Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
найдем тангенс угла А = НС/АН тангенс в квадрате= 1/косинус в квадрате -1= 9 тангенс =3.
АН= НС/тангенс угла А= 6/3=2. т.к треуг равнобедренный следовательно СН- медиана . АВ=4