ответ: доказать это невозможно. Объясняю: рисуем угол, проводим его биссектрису, берем на ней точку P. Проводим окружность с центром в точке P так, чтобы она каждую сторону угла пересекала в двух точках. Пусть на одной стороне это точки M_1 и M_2 (M_1 ближе к вершине угла, M_2 дальше), на второй -K_1 и K_2 (K_1 ближе к вершине угла, K_2 дальше). Если из точек M_1, M_2 выбрать, скажем M_1, а из точек K_1, K_2 выбрать K_2, то DM_1≠DK_2, хотя все условия задачи выполнены.
Эта ситуация является хорошей иллюстрацией, почему есть признак равенства треугольников по двум сторонам и углу между ними, но нет признака по двум сторонам и углу не между ними (то есть такой признак можно было бы придумать, но пришлось бы давать дополнительную информацию, скажем по поводу того, являются ли наши треугольники остроугольными или тупоугольными)
1) Находим длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √128 = 11.3137085, BC = √((Хc-Хв)²+(Ус-Ув)²) = √80 = 8.94427191, AC = √((Хc-Хa)²+(Ус-Уa)²) = √272 = 16.4924225.
Меньший угол лежит против меньшей стороны - это угол А. cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0.857493.
2) Диагональ АС делит параллелограмм на 2 равных треугольника. Находим площадь треугольника АВС: S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 8. Отсюда S(АВСД) = 2*8 = 16.
Можно было найти длины сторон АВ и АД, потом косинус угла А, затем его синус и по формуле S(АВСД) = 2*S(АВД) = 2*((1/2)*АВ*АД*sinA). Но, я считаю, это более громоздкое решение.
Объясняю: рисуем угол, проводим его биссектрису, берем на ней точку P. Проводим окружность с центром в точке P так, чтобы она каждую сторону угла пересекала в двух точках. Пусть на одной стороне это точки M_1 и M_2 (M_1 ближе к вершине угла, M_2 дальше), на второй -K_1 и K_2 (K_1 ближе к вершине угла, K_2 дальше).
Если из точек M_1, M_2 выбрать, скажем M_1, а из точек K_1, K_2 выбрать K_2, то DM_1≠DK_2, хотя все условия задачи выполнены.
Эта ситуация является хорошей иллюстрацией, почему есть признак равенства треугольников по двум сторонам и углу между ними, но нет признака по двум сторонам и углу не между ними (то есть такой признак можно было бы придумать, но пришлось бы давать дополнительную информацию, скажем по поводу того, являются ли наши треугольники остроугольными или тупоугольными)