Номер 1. Т.к треугольник прямоугольный, то один из углов 90градусов по опр. Значит т.к треугольник еще и р/б, то по свойству у него два угла при основании равны. Если среди них есть угол в 90градусов то их сумма 180градусов, что противоречит теорема о сумме углов в треугольника, значит эти углы по (180-90)/2=45градусов. ответ:90,45,45 Номер 2. Т.к треугольник CDE - р/б, то угол C равен углу E, значит т.к угол D равен 54градуса, то угол E=(180-54)/2=63градуса. То т.к CF - высота, то угол CFE=90градусов, следовательно угол ECF=180-54-63=63градуса ответ:63градуса Надеюсь все понятно объяснил.
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°