Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.
То есть три стороны пересекаются между собой по 90 градусов, первая и третья - получаются параллельные, а к ним примыкают 17 сторон с неким одинаковым углом между собой и с первой и третьей стороной.
Третья сторона с четвертой пересекаются под тупым углом а и сторона поворачивается относительно предыдущей на 180-а и так доходит по кругу до первой стороны к которой примыкает двадцатая "недовернутая" на эти 180-а. Получается, что для того, чтобы все сошлось (20-ая сторона довернулась относительно третьей на 180 градусов) надо чтобы каждая из этих сторон доворачивалась на 180/10 = 18 градусов, а угол между сторонами с третьей по первую был 180-10 = 170 градусов.
Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.