Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
Равновеликие треугольники это значит что их площадь равна, вычисляем площадь треугольника МРК по трем сторонам используя формулу Герона: S=корень квадратный из p*(р-МР)*(р-РК)*(р-МК), где р это полупериметр, p=(МР+РК+КМ)/2=(9+10+17)/2=18, тогда S=корень квадратный из 18*9*8*1=36. Это мы нашли площадь треугольника МРК. Значит площадь треугольника АВС тоже 36 кв. см.
Теперь используем свойство высоты равнобедренного треугольника (В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой), значит проводим высоту СД. она делит основание пополам, значит АД=ДВ=12/2=6 см.
Теперь по формуле вычисления площади треугольника вычисляем длину высоты СД в треугольнике АВС: S=1/2 АВ*СД, значит 36=1/2*12*СД, СД=36/6=6 см.
Теперь мы знаем основание и высоту треугольника АВС, а по свойству углов равнобедренного треугольника мы знаем, что углы при основании равны и нам нужно найти только один угол в прямоугольном треугольнике АСД (угол СДА прямой, так как СД это высота). Если в прямоугольном треугольнике АСД мы знаем два катета АД=6 см и СД=6 см, это значит, что треугольник АСД равнобедренный. По свойствам суммы углов треугольника мы вычисляем сумму углов ДАС и АСД: 180-90=90 и делим пополам, так как эти углы равны 90/2=45. Итак, мы знаем угол САД (он же САВ), и он равен углу СВА и равен 45 градусов.
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
ΔOKD: OK = KD · cos (α/2)
Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13
cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13
Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91