Если я не ошибаюсь, то перпендикуляр из точки М к плоскости в таком случае будет находится на середине гипотенузы, отсюда:
MB - неизвестно(или назови другими буквами, как пожелаешь);
MO=12 см;
AB=6 см;
AC=8 см;
MA=MB=MC.
BC=10 см - по соотношению сторон, это Пифагорин треугольник (3х:4х:5х);
MB=√MO²+(BC/2)²=√12²+5²=√169=13 см.
ответ: 13 см.
В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27
Проекция точки М на плоскость треуг. АВС совпадет с центором описанной окружности. Обозначим О. Расстояния АО=ВО=СО=радиус опис.окр.=половине кореня кв. из(6*6+8*8)=5.
По теор.Пифагора расстояние от М до вершин треугольника= корень кв.из (12*12+5*5)=13см.