М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
оарташ
оарташ
18.11.2021 08:09 •  Геометрия

2 Диаметр сферы монумента Байтерек в Нур-Султане равен 22 м. Найдите площадь поверхности шара.

A
521π

B
484π

C
22π

D
44π

👇
Открыть все ответы
Ответ:
rortat32
rortat32
18.11.2021

1. Угол, смежный с углом 2, будет равен 180° - 26° = 154°. Этот угол будет равен углу один, следовательно угол 1 = 154°

2. Угол, смежный с углом 1, будет равен 180° - 53° = 127°

Угол 2 = углу, смежному с углом, следовательно a || b.

3. Угол BNM = 180° - 116° = 64°

Т. к. треугольник ABC - равнобедренный, то углы BAC = BCA = 64°

Угол BNM = BCA, следовательно MN || AC.

4. Угол, который односторонний с углом BAE, равен 180° - 120° = 60°

Т. к. BC - биссектриса, то углы ABC = DBC = (180° - 60°) ÷ 2 = 60°

Угол BAC = 180° - 120° = 60°, следовательно угол BCA = 180° - 60° - 60° = 60°

В последнем я жёстко туплю что-то, если найду ошибку, то отпишусь.

4,5(58 оценок)
Ответ:
vashchilkophoto
vashchilkophoto
18.11.2021
Условие задачи неполное, так как с данной фиксированной площадью имеется бесконечно много сегментов, и радиусы соответствующих секторов будут все разными.
Поэтому задача может быть решена только в общем виде.

Площадь сектора:
Sсект = πR²α / 360°
Если угол задан в радианах, то
Sсект = πR²α / (2π)  = 1/2 · R²α

Площадь треугольника АВС:
Sabc = 1/2 · R²·sinα

Площадь сегмента:
Sсегм = Sсект - SΔabc  = 1/2 · R²α - 1/2 · R²·sinα = 1/2 · R²(α - sinα)

По условию, площадь сегмента равна 3π - 9:
1/2 · R²(α - sinα) = 3π - 9
R² = (6π - 18) / (α - sinα)
R = √( (6π - 18) / (α - sinα) )

По этой формуле можно вычислить радиус, если известен угол сектора.
Например:
α = π/6
R = \sqrt{ \frac{6( \pi - 3)}{ \frac{ \pi }{6}- \frac{1}{2} } } = \sqrt{ \frac{6( \pi -3)}{ \frac{ \pi -3}{6} } } = \sqrt{36} = 6
4,6(33 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ