Шаг первый. В основании треугольник со стороной 6√3 см и противолежащим углом 120°⇒ по следствию из теоремы синусов отношение этой стороны к синусу противолежащего угла равно двум радиусам описанной окружности 2*R
Шаг второй. т.к. все боковые ребра пирамиды равны, то основание высоты пирамиды - центр описанной окружности радиуса 6см. которая равна расстоянию от вершины С до центра окружности и это расстояние - это проекция наклонной на плоскость основания. а угол наклона ребра к плоскости основания, равный 60°- это угол наклона ребра к его проекции, т.е. к радиусу описанной окружности.
Шаг третий. Чтобы найти искомую высоту пирамиды, коей является катет, лежащий против угла в 60°, в прямоугольном треугольнике, составленном из высоты - искомого катета ; известного катета -радиуса описанной окружности 6см, и наклонной пирамиды - гипотенузы, необходимо найти высоту. т.е. противолежащий углу в
60 ° , катет, по прилежащему катету 6см.
h/R=tg60°⇒h=R*tg60°=6*√3/cм/, здесь h- высота пирамиды, R -радиус описанной около основания пирамиды окружности.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Задача состоит из трех шагов.
Шаг первый. В основании треугольник со стороной 6√3 см и противолежащим углом 120°⇒ по следствию из теоремы синусов отношение этой стороны к синусу противолежащего угла равно двум радиусам описанной окружности 2*R
6√3/sin120°=2*R⇒R=6√3/(2sin120°)=6√3/(2sin60°)=6√3/(2√3/2)=6(cм)
Шаг второй. т.к. все боковые ребра пирамиды равны, то основание высоты пирамиды - центр описанной окружности радиуса 6см. которая равна расстоянию от вершины С до центра окружности и это расстояние - это проекция наклонной на плоскость основания. а угол наклона ребра к плоскости основания, равный 60°- это угол наклона ребра к его проекции, т.е. к радиусу описанной окружности.
Шаг третий. Чтобы найти искомую высоту пирамиды, коей является катет, лежащий против угла в 60°, в прямоугольном треугольнике, составленном из высоты - искомого катета ; известного катета -радиуса описанной окружности 6см, и наклонной пирамиды - гипотенузы, необходимо найти высоту. т.е. противолежащий углу в
60 ° , катет, по прилежащему катету 6см.
h/R=tg60°⇒h=R*tg60°=6*√3/cм/, здесь h- высота пирамиды, R -радиус описанной около основания пирамиды окружности.
Отвте 6√3 см