Проводим две параллельные прямые и проводим секущую. У нас получаются углы: накрест лежащие, односторонние и соответственные. Смотрим на первые два угла (например это верхняя прямая. Углы образуются, когда через прямую проводят секущую), обозначим их угол 1 и угол 2. Так как угол один и угол два - смежные, следовательно мы из 180-126=54 градуса. А далее, смотрим на рисунок и получается, что угол 1 и угол вертикальный углу 1 равны (свойства вертикальных углов), а так же угол 1 и угол, который находится на второй прямой, так же когда его пересекает секущая, эти углы тоже равны, так как это соответственные углы (а они равны), а так же еще один угол, который вертикальный предыдущему углу так же равен по свойству вертикальных углов. С углом в 54 градуса та же самая хрень, те же вертикальные углы и т.д. Так надо?
Проводим две параллельные прямые и проводим секущую. У нас получаются углы: накрест лежащие, односторонние и соответственные. Смотрим на первые два угла (например это верхняя прямая. Углы образуются, когда через прямую проводят секущую), обозначим их угол 1 и угол 2. Так как угол один и угол два - смежные, следовательно мы из 180-126=54 градуса. А далее, смотрим на рисунок и получается, что угол 1 и угол вертикальный углу 1 равны (свойства вертикальных углов), а так же угол 1 и угол, который находится на второй прямой, так же когда его пересекает секущая, эти углы тоже равны, так как это соответственные углы (а они равны), а так же еще один угол, который вертикальный предыдущему углу так же равен по свойству вертикальных углов. С углом в 54 градуса та же самая хрень, те же вертикальные углы и т.д. Так надо?
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Дано: ΔАВС подобен ΔКLМ.
Доказать: S(ABC)\S(KLM)=k²
Смотри чертеж.
Доказательство: из подобия треугольников следует, что АВ\КL=ВС\LМ=АС\КМ=k
Известно, что, если у двух треугольников равны углы, то их площади относятся как произведения сторон, заключающих данные углы, т.е.
S(ABC)\S(KLM)=(AB*AC)\(KL*KM)=AB\KL * AC\KM = k * k = k².
Теорема доказана.
Д