Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Треугольник остроугольный => высоты пересекаются внутри треугольника.
Пусть угол BAK равен alfa, тогда из прямоугольного треугольника ABK: угол ABK = 90 - alfa
Пусть угол ABC равен beta, тогда из прямоугольного треугольника ABH: угол HAB = 90 - beta
Из рассмотрения треугольника ABM: сумма углов равна 180 градусов;
AMB + MAB + MBA = 180
105 + (90-alfa) + (90-beta) = 180
Отсюда alfa + beta = 105 (град)
Сумма углов треугольника ABC равна 180 градусов, тогда
угол ACB = 180 - (ABC+BAC) = 180 - (alfa+beta) = 180 - 105 = 75 (град)
Тогда угол AOB = 2 * ACB = 150 град (O — центр окружности; A, B, C лежат на ней)
Далее, треугольник ABO — равнобедренный (AO и BO — радиусы одной окружности) , поэтому углы при основании равны:
OAB = ABO = (1/2) * (180 - AOB) = (180-150)/2 = 15 (градусов) .
ОТВЕТ: угол ABO = 15 градусов.