Отложим эти точки на координатной плоскости и докажем, что ABCD - ромб
Точка пересечения AC и BD == О
Из рисунка следует, что диагонали АС и BD перпендикулярны. Если такой тип решения не подходит, можно сказать, что координаты иксов точек B, D равны и координаты игриков А, С равны, => они находятся на двух перпендикулярных прямых
Треугольники ABO, BOC, COD, DOA равны по двум катетам, => их гипотенузы тоже равны.
Следовательно, ABCD - ромб, т.к. все его стороны равны, а диагонали перпендикулярны
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.